
October 1997 The Delphi Magazine 53

DirectX 3D In Delphi
by Andrew Kern and Noel Rice

The problem with most “mini-
mal” examples of program-

ming in DirectX 3D is that they are
not minimal. When I want to learn a
complex new technology, I want
the smallest possible example that
still runs. We just happen to have
such an example here...

Though this article attempts to
keep the code size to a bare mini-
mum for an example of 3D graphics
with Microsoft’s Direct3D, you will
still need to install Direct3D, and
have access to at least one *.X file,
and DirectX.pas. The simplest way
to access to the first two pieces is
to download the Game SDK from
Microsoft’s website, currently at:
www.microsoft.com/directx/
resources/downloads/dx5dl.htm

The final piece, DirectX.pas is on
the accompanying disk. This
Pascal file contains prototypes for
all interfaces used in the article
example. Special thanks to Blake
Stone for all his work on the origi-
nal conversion of Microsoft’s
header files to DirectX.pas and to
Danny Thorpe for making the final
interface conversions.

To program a minimal example
that displays a rotating object, we
can use the DirectX 3D “Retained
Mode” that handles the gritty work
of organizing buffers, matrix math,
rendering and screen swapping.
Retained Mode allows us to focus
on Spielberg-esqe tasks such as
placing visible objects, cameras

and lights within a 3D space. Before
getting too comfortable sitting in
the director’s chair and shouting
“Action!” you must first create and
initialize seven Direct3D Retained
Mode COM interfaces that
together perform the work of build-
ing and displaying moving 3D
images. These interfaces are:

IDirect3DRM;
IDirect3DRMFrame;
IDirectDrawClipper;
IDirect3DRMDevice;
IDirect3DRMMeshBuilder;
IDirect3DRMLight;
IDirect3DRMViewPort;

A word on the order of variable
declaration. The IDirect3DXXX vari-
ables represent interfaces man-
aged by the VCL. In most cases we
won’t want or need to have direct
control over interface creation or
destruction. In other words, we
shouldn’t have occasion to call
AddRef or Release. However, we
need to be aware that Delphi will
call interface Release methods and
that this can cause problems if
we’re not aware of the destruction
order. All interfaces will be
destroyed in the reverse order that
they are created. This holds true
for interfaces declared in proce-
dures as well as globally declared
interfaces. To avoid grief you must
not destroy interfaces that are still
being used by other interfaces.

Case in point: if IDirect3DRMDe-
vice is declared after IDirect3DRM-
ViewPort, then the device will be
destroyed before the viewport.
The function CreateViewPort
instantiates the viewport interface
based on a given device. If the
device is yanked out from under
the viewport bad things happen.
Access violation city. So, the moral
of the story is: declare interfaces in
the same order that they are used.
If access violations appear on ter-
mination of the application, try
reordering your interfaces.

First use the Direct3DRMCreate
function to create a IDirect3DRM
interface. IDirect3DRM acts as a
manager for the 3D environment
and allows us to create other
retained mode interfaces:

Var D3DRM: IDirect3DRM;
...
Direct3DRMCreate(D3DRM);

Next, frames are created to provide
position, orientation and velocity
for each entity in the 3D space.
Frames in themselves are not
visual, but can be thought of as
places to hang visual objects. The
IDirect3DRM.CreateFrame method
takes two IDirect3DRMFrame
parameters: a parent frame and
the frame to be created. The first
frame created in the example,
“Scene,” acts as a container for the
entire 3D space. This frame has no
parent, so we pass Nil as the first
parameter to CreateFrame. The fol-
lowing three frame interfaces will
provide position, velocity and ori-
entation information for lights,
camera and the visual object being
displayed. Scene is the parent
frame passed in the first parameter
for the creation of lights, camera
and MyvisualObject (Listing 1).

The next steps are necessary to
make DirectX3D activity visible in
our Delphi form. We’ll use an IDi-
rectDrawClipper interface to
manage the visible area of our
window, allow DirectX to know

➤ Figure 1

54 The Delphi Magazine Issue 26

what window we’re drawing in and
to create an output device. The
first and last parameters to Direct-
DrawCreateClipper function below
are currently reserved by Micro-
soft and unused. The SetHWnd func-
tion sets the window handle used
to access clipping information. The
first SetHWnd parameter is unused
and should be zero. In the call to
CreateDeviceFromClipper pass the
clipper interface, allow the system
to select a device by passing Nil in
the second parameter, use the
form’s ClientWidth and Clien-
tHeight for device dimensions, and
finally pass the IDirect3DRMDevice
to be created (Listing 2).

So far we have a 3D environment,
locations for various objects and a
mechanism to provide drawing
capabilities, but we still need a
visual object to look at, lights to
illuminate the object and a camera
to see the object with.

To create visual 3D objects,
DirectX3D uses the concept of a
mesh, which is a collection of
polygonal faces represented by a
IDirect3DRMMesh interface. We can
also use a IDirect3DRMMeshBuilder
interface to create an implicit mesh
interface and to load the mesh
from an existing *.x file containing
data describing the object’s faces.
Once the mesh is loaded we have a
visual object with a location that
defaults to the origin. Place the
mesh into the scene by calling Add-
Visual to attach the visual object to
a frame. An effective 3D demo
requires motion. The SetRotation
function causes the MyVisualObject
frame to spin in relation to the
scene frame along horizontal, ver-
tical or depth axis, at a speed given
by the last parameter (Listing 3).

We now have an visual object in
the scene, but we still can’t see it
because it’s dark. We need to
create a IDirect3DRMLight and
attach it to a frame to illuminate
the visual object. Though there are
five different varieties of lights, I
suggest using D3DRMLIGHT_DIREC-
TIONAL for most reliable results.
D3DRMLIGHT_DIRECTIONAL simulates
a faraway light source like the sun,
and as such is not as sensitive to
position as some of the other
settings (Listing 4).

Var
Scene, Camera, Lights, MyVisualObject: IDirect3DRMFrame;

...
D3DRM.CreateFrame(Nil, Scene);
D3DRM.CreateFrame(Scene, Lights);
D3DRM.CreateFrame(Scene, Camera);
D3DRM.CreateFrame(Scene, MyVisualObject);

➤ Listing 1

Var
DDClipper: IDirectDrawClipper;
Dev: IDirect3DRMDevice;

...
DirectDrawCreateClipper(0, DDClipper, Nil);
DDClipper.SetHWnd(0, Handle);
D3DRM.CreateDeviceFromClipper(DDClipper, Nil, ClientWidth, ClientHeight, Dev);

➤ Listing 2

The point of view of the user
looking at a visual 3D object is repr-
esented by a viewport. 3D objects
are rendered to a 2D rectangular
area of a device. This process is
handled by the IDirect3DRMView-
Port interface (Listing 5).

Since all objects have locations
that default to the origin, we will
want to move the camera back a
few paces so that our camera and
object are not crowded together in
the same space. The light does not
need to be repositioned, because
we’re only interested in the light as
a vector that represents the direc-
tion it is pointing, not it’s actual
location. Since we are trying to
keep this example simple, we don’t
bother to reposition it. We only
need to move the camera back in
order to view the visible object:

Camera.SetPosition(Scene,0,0,-10);

Var
MeshBuilder: IDirect3DRMMeshBuilder;
MyVisualObject: IDirect3DRMFrame;
...
D3DRM.CreateMeshBuilder(MeshBuilder);
MeshBuilder.Load(PChar(‘egg.x’), Nil, D3DRMLOAD_FROMFILE, Nil, Nil);
MyVisualObject.AddVisual(IDirect3DRMVisual(MeshBuilder));
MyVisualObject.SetRotation(Scene, 1, 1, 1, 0.01);

➤ Listing 3

As the director of this process you
have created the 3D environment
complete with lights, camera and
visible objects. The call to
“Action!” takes the form of the Tick
function. IDirect3DRM.Tick can be
placed in a TTimer’s OnTimer event
and will update the position of
frames in the scene and render the
new results to the output device.
The single parameter taken by Tick
applies to rotations and velocities
by all frames in the scene. The
larger the number, the faster the
apparent speed of object move-
ment in the scene.

The DirectX 3D engine is suscep-
tible to floating-point processor
stack overflow errors under
Windows 95, but seems to work
fine under NT4 with Service Pack 3.
For those of us on 95, the
try..except block will trap for
these errors and ignore them:

Var Light1: IDirect3DRMLight;
...
D3DRM.CreateLightRGB(D3DRMLIGHT_DIRECTIONAL, 1.0, 1.0, 1.0, Light1);
Lights.AddLight(Light1);

➤ Listing 4

Var View: Idirect3DRMViewPort;
...
D3DRM.CreateViewPort(Dev, Camera, 0, 0, ClientWidth, ClientHeight, View);

➤ Listing 5

October 1997 The Delphi Magazine 55

try
D3DRM.Tick(1.0);

except
on EInvalidOp do
; //ignore floating point overflow

end;

Listing 6 shows a no-frills working
program in its most minimal form.
This does not show any of the nice-
ties, like error trapping or resizing
of windows. We won’t get into
window resizing, but to make the
minimal program a bit more robust
we can add helper functions to
examine and react to DirectX
return codes. Add DDUTILS.PAS to
your uses clause (Listing 7) and
wrap each function call with a
xxxCheck function. You can use the
D3DRMCheck function for methods of
retained mode interfaces:

D3DRMCheck(
Direct3DRMCreate(D3DRM));

and DDCheck for the IDirectDraw-
Clipper interface methods:

DDCheck(DirectDrawCreateClipper
(0, DDClipper, Nil));

DDCheck(DDClipper.SetHWnd(
0, Handle));

DirectX3D retained mode allows us
to jump over the low-level tedium
of having to build our own 3D

➤ Listing 7

engine while Delphi 3 simplifies the
process of working with these
COM interfaces.

The combination of DirectX3D
and Delphi 3 makes the formidable
task of 3D display a relatively
simple matter of about eighteen
lines of code. From here you can
dig into DirectX.pas; it’s filled with
possibilities for adding textures,

creating new mesh objects, and
lighting effects.

Andrew Kern (email akern@corp.
borland.com and Noel Rice (email
nrice@corp.borland.com) both
work for Borland in the USA.

➤ Listing 6

unit DDUtils;
interface
uses Windows, Classes, SysUtils, DirectX, ComObj;
type
EDDError = Exception;
ED3DRMError = Exception;

procedure DDCheck(Result: HResult);
procedure D3DRMCheck(Result: HResult);
implementation
procedure D3DRMError(ErrorCode: HResult);
var ErrMsg: String;
begin
case ErrorCode of
D3DRMERR_BADALLOC: ErrMsg := 'Out of memory.';
D3DRMERR_BADDEVICE: ErrMsg :=
'Device is not compatible with renderer.';

D3DRMERR_BADFILE: ErrMsg := 'Data file is corrupt.';
D3DRMERR_BADMAJORVERSION: ErrMsg := 'Bad DLL major version.';
D3DRMERR_BADMINORVERSION: ErrMsg := 'Bad DLL minor version.';
D3DRMERR_BADOBJECT: ErrMsg := 'Object expected in argument.';
D3DRMERR_BADTYPE: ErrMsg := 'Bad argument type passed.';
D3DRMERR_BADVALUE: ErrMsg := 'Bad argument value passed.';
D3DRMERR_FACEUSED: ErrMsg := 'Face already used in a mesh.';
D3DRMERR_FILENOTFOUND: ErrMsg := 'File cannot be opened.';
D3DRMERR_NOTDONEYET: ErrMsg := 'Unimplemented.';
D3DRMERR_NOTFOUND: ErrMsg := 'Object not found in specified place.';
D3DRMERR_UNABLETOEXECUTE: ErrMsg := 'Unable to carry out procedure.';

end;
ErrMsg := 'DirectDraw 3D Retained Mode error: ' + ErrMsg;
raise ED3DRMError.Create(ErrMsg);

end;
procedure D3DRMCheck(Result: HResult);
begin
if Result <> D3DRM_OK then D3DRMError(Result);

end;
procedure DDError(ErrorCode: HResult);
begin
raise EDDError.Create('DirectDraw error');

end;
procedure DDCheck(Result: HResult);
begin
if Result <> DD_OK then DDError(Result);

end;
end.

unit MinDirX1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, DirectX, StdCtrls, ExtCtrls, ComObj;

type
TfrmMain = class(TForm)
Timer1: TTimer;
procedure FormCreate(Sender: TObject);
procedure Timer1Timer(Sender: TObject);

public
D3DRM: IDirect3DRM;
Scene, Camera, Lights, MyVisualObject: IDirect3DRMFrame;
MeshBuilder: IDirect3DRMMeshBuilder;
Light1: IDirect3DRMLight;
View: IDirect3DRMViewPort;
DDClipper: IDirectDrawClipper;

end;
var frmMain: TfrmMain;

Dev: IDirect3DRMDevice;
implementation
{$R *.DFM}
procedure TfrmMain.FormCreate(Sender: TObject);
begin
{ Create the IDirect3DRM interface from which other
interfaces are created and managed }

Direct3DRMCreate(D3DRM);
{ Create frames to provide location and velocity for
each visual element in the 3D landscape }

D3DRM.CreateFrame(Nil, Scene);
D3DRM.CreateFrame(Scene, Lights);
D3DRM.CreateFrame(Scene, Camera);
D3DRM.CreateFrame(Scene, MyVisualObject);
{ Next steps create an IDirect3DRMDevice to keep track of

hard/software capabilities & window area being drawn to}
DirectDrawCreateClipper(0, DDClipper, Nil);
DDClipper.SetHWnd(0, Handle);
D3DRM.CreateDeviceFromClipper(DDClipper, Nil, ClientWidth,
ClientHeight, Dev);

{ Create 3D visible object, add to scene and give it a spin }
D3DRM.CreateMeshBuilder(MeshBuilder);
MeshBuilder.Load(PChar('Egg.x'), Nil, D3DRMLOAD_FROMFILE,
Nil, Nil);

MyVisualObject.AddVisual(IDirect3DRMVisual(MeshBuilder));
MyVisualObject.SetRotation(Scene, 1, 1, 1, 0.01);
{ Add a light and attach to a frame. Forgetting this makes
for a fully functioning but extremely boring display }

D3DRM.CreateLightRGB(D3DRMLIGHT_DIRECTIONAL, 0.03, 0.9,
0.9, Light1);

Lights.AddLight(Light1);
{ viewport defines how 3D scene is rendered to 2D window.
Position & orientation of Camera define user point-of-view }

D3DRM.CreateViewPort(Dev, Camera, 0, 0, ClientWidth,
ClientHeight, View);

Camera.SetPosition(Scene, 0, 0, -7);
Timer1.Interval := 1;

end;
procedure TfrmMain.Timer1Timer(Sender: TObject);
begin
D3DRM.Tick(1.0);
{ The Tick method actually encapsulates four other tasks:
IDirect3DRMFrame.Move: Reposition frames according to
rotation and velocity.

IDirect3DRMViewport.Clear: Clear the viewport to the
current background color.

IDirect3DRMViewport.Render: Draw 3D scene to memory.
IDirect3DRMDevice.Update: Copy rendered scene to window}

end;
end.

